FUNGSI KOMPOSISI
FUNGSI KOMPOSISI
Dan pada kesempatan kali ini kita akan
membahas mengenai Fungsi Komposisi. Apa itu Fungsi Komposisi?
Misalkan kita memiliki fungsi f(x) = 2x + 3 dengan domainnya adalah bilangan real, dan g(x) = √(x – 1) dengan domain x ≥ 1 untuk x bilangan real. Fungsi komposisi g ○ f dapat digambarkan sebagai berikut.
Mula-mula x merupakan anggota domain f yang selanjutnya dipetakan oleh f ke bayangan x, yaitu f(x). Dari f(x) dipetakan kembali oleh g ke g(f(x)). Dengan demikian fungsi komposisi g ○ f adalah pemetaan x anggota domain f oleh fungsi f, selanjutnya bayangannya dipetakan kembali oleh g. Uraian tersebut memperjelas definisi dari fungsi komposisi berikut.
adversitemens
Diketahui f dan g dua fungsi
sembarang, maka fungsi komposisi f dan g ditulis g ○ f didefinisikan
sebagai (g ○ f)(x) = g(f(x)) untuk setiap x anggota domain f.
Syarat yang harus dipenuhi agar
fungsi f dan fungsi g dapat dikomposisikan menjadi fungsi komposisi g ○ f
adalah irisan antara daerah hasil fungsi f dan daerah asal fungsi g
bukan himpunan kosong.
Perhatikan contoh berikut :
1. Jika f(x) = 2x + 3 dan (f o g) = 2x2 + 6x – 7, maka g(x) = …
Penyelesaian :
(f o g)(x) = 2x2 + 6x – 7
f(g(x)) = 2x2 + 6x – 7
2(g(x)) + 3 = 2x2 + 6x – 7
2 (g(x)) = 2x2 + 6x –10
jadi g(x) = x2 + 3x – 5
2. Fungsi g: R → R ditentukan oleh g(x) = x2 – 3x + 1 dan f: R → R sehingga (f o g)(x) = 2x2 – 6x – 1
maka f(x) = ….
Penyelesaian :
(f o g)(x) = 2x2 – 6x – 1
f (g(x)) = 2x2 – 6x – 1
f ( x2 – 3x + 1) = 2x2 – 6x – 1
= 2 ( x2 – 3x + 1 ) – 3
Jadi f (x) = 2x – 3
3. Jika f(x) = x2 + 3x dan g(x) = x – 12, maka nilai (f o g)(8) adalah ….
Penyelesaian :
g(8) = 8 – 12 = – 4
jadi (f o g) (8) = f(g(8)) = f(-4) = (-4)2 + 3(-4) = 16 – 12 = 4
4. Diketahui (f o g)(x) = x2 + 3x + 4 dan g(x) = 4x – 5. Nilai dari f(3) adalah ….
Penyelesaian :
(f o g)(x) = x2 + 3x + 4
f (g(x)) = x2 + 3x + 4
Untuk g(x) = 3 maka
4x – 5 = 3
4x = 8
x = 2
Karena f (g(x)) = x2 + 3x + 4 dan untuk g(x) = 3 didapat x = 2
Sehingga :
f (3) = 22 + 3 . 2 + 4 = 4 + 6 + 4 = 14
Komentar
Posting Komentar